
Page 1 of4

BL co
La) Differentiate between the top-down and bottom-up L2 COi problem-solving approaches.
1.b) Differentiate between algorithm and flow chart. L2 COl
l.c) Differentiate between a "while" loop and a "do-while"

loop, and provide an example of when you would L2 CO!
choose one over the other.

1.d) Explain the difference between the "if' statement and L2 CO! the "if-else" statement in terms of their execution.
l.e) In programming, what is a string, and how is it LI CO! typically represented in memory? .
l.f) What is the purpose of declaring the size of an array Ll COi when you create it in a programming language like C?
l.g) Differentiate between a pointer variable and a regular L2 COl variable in terms of how they store data.
l.h) Explain the role of functions like 'malloc()' and 'free()' L2 COi in dynamic memory allocation in C.
l.i) What is a function in programming, and why is it used? LI COi
1.j) Compare call-by-value with call-by-reference. L2 COi

PART-A

Note: I. This question paper contains two Parts A and B.
2. Part-A contains l O short answer questions. Each Question carries 2

Marks.
3. Part-B contains 5 essay questions with an internal choice from each unit.

Each Question carries IO marks.
4. All parts of Question paper must be answered in one place.

BL - Blooms Level CO - Course Outcome

Max. Marks: 70 Duration: 3 hours

INTRODUCTION TO PROGRAMMING
(Common for ALL BRANCHES)

J B.Tech - I Semester - Regular Examinations - JANUARY 2024

Code: 23ES 1102
I PVP23 I

Page 2 of 4

~
BL co Max.

Marks -
UNIT-I

2 a) Explain various operators in C. L2 COJ SM
b) Compare and contrast high-level programming L2 COi SM

languages and low-level programming
languages. Give examples of each and discuss
their respective advantages and disadvantages.

OR
3 a) Discuss the concept of data types and their L2 COi SM

importance in programming. Provide examples
of situations where choosing the right data type
is crucial for program efficiency.

b) Write an algorithm and draw a flow chart to L2 COi SM
calculate the sum of first 10 natural numbers. .

UNIT-II
4 a) Create a C program that employs a "while" loop L3 C02 SM

to print all even numbers between 1 and 50, but
skips any numbers that are divisible by 6 using
the "continue" statement. Provide the code and
a detailed explanation.

b) Write a C program that uses a "for" loop to find L3 C02 SM
the first prime number between 100 and 200.
Implement the "break" statement to exit the
loop once the prime number is found.

OR
5 a) Discuss the advantages of using a "switch" L2 COi SM

statement over a series of "if' statements in
certain scenarios. Provide an example to
illustrate your point.

b) Create a C program that continuously promp_ts L3 C02 SM
the user to enter a positive integer until a
negative number IS entered. Calculate and
display the sum of all the positive integers
entered by the user. Utilize a "while" loop, .

PART-B

Page 3 of 4

conditional statements, and the "break" I statement to terminate the loop when a negative
number is provided. I

I
UNIT-III I

6 a) Discuss the importance of string manipulation L3 C03 SM
in programming, including tasks like I comparison, concatenation, and substring
extraction. Provide a code example in C that
demonstrates these string operations.

b) Explain the advantages of· using a two- L2 C02 SM
dimensional array over a one-dimensional array

I when working with tabular data or grids.
Provide real-world examples where two- l
dimensional arrays are useful.

OR
7 a) Imagine you need to manage a list of customer L3 C02 SM

names in a business application. Discuss the

I advantages and disadvantages of using an array . for this purpose .
b) You have an array of integers representing the L3 C03 SM I

daily temperatures for a week (indexO: Sunday,
indexl: Monday and so on). Write a C program
that finds and prints the day with the highest
temperature and the temperature itself.

UNIT-IV
8 a) Design a C program that reverses the elements L3 C03 SM

of an integer array using pointers. Provide the
code and a step-by-step explanation of the
algorithm.

b) Explain the concept of pointer arithmetic. L3 C03 SM
Illustrate with an example program.

OR
9 a) You are developing a program to manage a L4 C04 SM

library's book collection. Design a C program
that uses a structure to represent book
information, such as title, author, and

.
Pase 4 of 4

publication year. Implement functionalities to
add and search· for books in the collection.
Include the code and explain how structures are

- used for this purpose.
b) Discuss the significance of null pointers and the L2 COJ SM

potential issues associated with usmg
uninitialized pointers.

UNIT-V
10 a) Explain the concepts of variable scope and L2 COJ SM

lifetime m a programming language and
provide examples of local and global variables
in C. ,_ --

b) You are designing a program to manage a L4 C04 SM
library's catalog. Create a c program that
defines a function to add books to the catalog.
The function should take book details as

- parameters and append to a file.
OR

11 a) Define recursion. Develop a program to find LJ C03 SM
factorial of a given number using recursion.

b) Discuss the significance of file modes (e.g., "r," LJ COJ SM
"w," "a") when opening and manipulating files,
and provide an example for each mode .

!IW3H3S l.HOHS

V - ..LU 'f' ,l

t~- ;-~ ~ - ..a•;·.,~~.t~7 • ..

. ~ f ,).) 1 Z~! .· dn·uroi1~;.· pm-1

wz - sg::,u~J~JJ!P O,y\i AUV :gm~nps

·sricpci)J.i.ldtf' -~µ!,H~j .. ~~f<lt,~,~ j IJ.,,o·, Hk)J ~lll U-~lJ \\J~, .. \ /~ttntr.').t~n.•,,. tt!" I [··1:1 \t· \-iol
- ·- .. ~..o..-.......,J.::t-. ""'""' ~.·-·~·--- ..

wz - SJ~)UgJgJJ!P OMl AUV :~w~4::,s

·: T(1.TT1 l" - "" .~ '1.ll?\{:J. r\\Ol(pun-1mnµofi1e U00 .. -.\1;,qJ'!'JU!f~=iJ:Jlna 1 {<rr j
···-- . - -~ ,...~ ..

WI - g1durnxg

w I - s~::,ugJJJJ!P OMl ;(uy .ouioqog

----r .' ! ... --~~,..._.,.,.. "J.J1ij10- ~ er, .iS~~.~-10 ~~"i)rnp ·~ . 1.
~· lf)) Z'I • pfn(M\ no~{ U:ltf,., 10 .Jj<lwr.x~ til.! opf./1.,;.11~ pee •Joo1 j

· ! ·o~'t~4M.""l\Pl4 c pun drmi , ••)[~tf.\'IH ~ ll~i'M\l~q ~fl!iU~J~U!Cl I (j~f I . ~· ~------ - "'· ..J ·-:,..,. -e-. ,,

.W 1 - sg::,u~J~JJ!P OM'.) AUV :gmgq::,s

"T t ··-·-:ru).)fl ='~X~ J ~.llfl Jfl S lU.l~l ciT (1 IJUi';nffs:··::~~r,~ f ! ... ,"'ltfl '";° ·--- -
JO.) ;: I f 'pun at:lUIO·lr'l·~ ,JI,, ."ll[l lf..1~ \\Pq tl,"lJ~l:J . .lffP. OC{J U!l:ft \":1 , (JJ' t "" ... _ .. •""· ~-

I

w [- uomu~po ::::>w~q::,s

- -r· - - (;Gotu,w tu ~lll~S~J OJ i<uv.:,~d,{l ~ - .
l l J..!f SL_ .\\Oll pun 'i1.U~ll~ l~ SI lll~,\~--·~u~UllOCJ_ifo.lll UJ ,_ (:)" L ~

Wl - uoqeue1dx3

l l),)

WZ: - U0!1UUE?[cfX3 l[l!A'\ UO!lUlUpdQ :dUIJ4:1S

.. --,l·J ;,~11 ~genffim1-tlmmmB.1~foJ<T e u1 li Jl?.OJ~ noX tr;>t(M 1 - • l U) 1 ·1 I ~ ·1. • • •
· _ _._L,(~.1.m ua JO ;;>Z!S :1~1\ _iu~:et~~tt' :>SOdJn_<l_~ ~! ICll/r); (J· t

WI -(tuc.1iJu!p) [dpow AJourdw

""T- -

Io)

WI - ()dd.IJ uoneuejdxq

11\l (- ():JO![Ulll uoneue1dx3 :;m1J4:JS

- i I ·...,-- ·.J .ll! uo1lex>ffn ,Goua~tu ~!urnuXp fr~-~-l.
I. j ~.~._)J.J. ~uu_ .O~OflHlll. ~~!I_ ~UC)[PUnLr) ,"1,l\J ;1q, ll!t!ldx·., ., (~r ~ ..

WI - (umJ~B!P) ppow A.IOWdJt\I

w i - saouorojjip 0M1 Auy :Jw;,4:,s
, < > • - -~-1----·· ·1:1r:p ;·uo1~ ,(:,tp ,\\l)l(.Jo suuo: ut ;)l.tl';!Je \

1

[.) \. I .m,u-;-1;1.1 I' pun ;)lll'!~I\!.\ J~lll\Od ~: l(.)J,\'\},)C,,{ ~lllllll:"\1,)J JI(! 'fi· 1

........__ " ~ "" -- ... • '. ~, : ~.. • t
I I I 01 ;)~fl 11 "! Alf\\ J)Ul! 'ilU!llllUC.litl\ld llf tt\lq.)ttllJ t: "! lt!l(A\ I (~' (

f •· - - L- • ,..,. l ())

·~:~~J~.P-~·~q-u1::1 lll!~\~ ~;11.~A~(q-nc~ ;)Jl!d~uo~_j \f' f]
lN l - dzh?sn

Scheme: 4 a) Program using while loop, if and continue - 3+ 1 + 1 = SM

4 b) Program using nested for loop, if and break - 3+ 1 + 1 = SM

--...-.

!' UNJT-11
l 4-Ja) -Cre~"i""c'atp;ogram 1hat employs .i "whilt!'' Iooj)'I i3-, (::O~r;M

I
f to print an even numbers between 1 and 50, but
f skips any numbers that are divisible by 6 using · 1

· j the "continue" statement. Provide the code and I
1 _ n d~t~iJed_ex~_na~ion.~. _ _ .__._1 •1 __ __, I b) / '\V1·i1c a C program that us cs a "for" loop to find L3 C01 5 M

i the first prime number between J 00 and 200.
l Implement the "break" statement ro exit the l I loop ouceth~ orime num.~cr i~ound. __ .:__....-1.-:

Situation examples - 2M

3 b) Algorithm to find sum of 10 natural numbers - 2.5M

Flowchart to find sum of 10 natural numbers - 2.5M

·: _ .:· on · '~ . x ra) ·, i)i!\~USS~--t~e .· ;;m:cpt Or d~ta l ypcs- ~i,{d - their f L2
l 1 , importqncc in programming. Provide examples ~

11 · ~ · : of situations where choosing the right data type

l
l _ ~ fs E~Eial ,for program ~fficien~y. . e: -<1-~--+----.1
b)'. Write an algorithm ·and draw a flow chart to L2 CO I

• __ 1 _ ; __ t;_a!f~~t~. 9~111 of f!rst IO ~a!ural num_b~rs•;.._._;_· .L:..-__.l~--~-"-.....::...J

Scheme: 3 a) Data types importance- 3M

, __ ... __
l

Scheme: 2 a) Explanation of any 5 types of Operators - 5M

2 b) any 3 differences for each - 3M

Advantages and Disadvantages - 2M

)

Scheme: 6 a) Importance of string manipulation - 2M

Example program for 3 operations - 3M

6 b) Advantages of 2D arrays - 3M

Real-time Examples - 2M

.... ' ' I \ o

llNIT-IJI
- . . "·--1 -

1
(, a) ' Discuss the unportancc of siring man ipulation : L3 I < '(i {

1 ; in prP~ramming. mcluding la!->k:,; like
j . "·ompa~·isnn, c~mcat~n..ition. and _substring I

I ; cxtracuon. Provide a. code cxa_mph.: in C that
L,._J <lt"monst~~ks these stnng_~)pcrat10n_s.:.__ _ ;
j h) j E_xplair~ the a1.h·antagcs of usin~ a two- ' 1.2 ('():,

I dimensional array o, er a onc-duncnxional array !
\\ hen ,, Prl--m~ \\ ith 1ahul;ir data 01 brid-., I:

Provide Jl·,il-,,orld 1..'\;1mpks where t\\'11- l
di111 .. .:11,1t',11.1I :1!'!'.1,, a,~· tl'l·!ul . .

Scheme: 5 a) Advantages of switch statement - 2.SM

Demonstration with example program - 2.SM

5 b) Demonstrate of Program with while loop, if and break- SM

(

...,

r·----------
()I{ J

- 5 . a TD Tscu s - il,C!adVaotag cS Of using a-,, switch .. i L2 I co i I 5 M I
l , statc1:1cnt over a se1p·ics .l<l)t' "i r· statcm~r11ts in 11

' .crtam scenarios. rov: c an cxarnp e to .
J __ i_jJl~_~tratc your poiru, .. ·- _

b) I Create a C program that cunt inuously prompts L 3
I the user to enter a positive integer until al
1 negative number is entered. Calculate arid I

r display the um of all the positive integers ; I ·
l --· .. --1 ent~red _h th_<.:__~1~c1~. __ Utilize _!_ "while" loop, _ _L • , 1 . J

r
. []conditional statements. and the "break" l Jl I

statemc~l to tc~minatt..: the loop when a negative 1 ·~.f\:~.',:
.. __ ,~um~~!:_~SJ)~ov ,~e~<l: . . _ _ _ L:I1.: -··- __

·· UNIT-IV
, J. --· - - p

8 a) 1 Design a C program that reverses the clements i J 3 I CC >11 " I\ I

I i 'of an integer array using pointers. Provid~ the ,I . 1
1 1 code and a .step-by-step explanation of the t

I jl~-~~g__~~J!E..l!·.:...... -~: --J· . ! __ -
1b); Explain :h.e .concept of pointer arithmetic, L3 C03

LJ...:_JJ!lustrat_~~w1th an example prograJ11. ._,1: •

11· Scheme: 8 a) Program to reverse array elements - 3M

Step-by-step Explanation - 2M

8 b) Explanation of pointer arithmetic - 2M

Example program- 3M

Scheme: 7 a) Discussion of 2-D Character Arrays to store customer names - 2M

2-D Character array Advantages - 3M

7 b) Demonstration with example program - SM

. ~----... _ .. ---------- ... - --
OR ,

7 ; a) / h~agi nc- yOIUicc<l tO flianage 3 Ii st of customer , . U 1 ("0' I· :i\J
J l names m a business application. Discuss the I i · advantages and disadvantages of using an array; I
L ' f <?r !J~is purpOS{.'. ~ :_ ~ -
, b), You have an arrav ol integer» representing the L> < ·01. 5 .\i

I daily temperatures for a week (indcxf): Sunday, 1

j index J: Monday and so on). Write a C program

J

that finds and prints the day with the highest
__ .,_ temper!lture and the !emperature itself._ ~=-·

U{

l I ,! Define I ccur: inn. I Jl.:'. (.'ICJjl il p, u~r,1111 to find L3 . co.~ --:·, I
_ ., 1.J<:_lC~EiaJ of~g_ivc1_1.~mher using recursion ! 1 '

h) Discuss the significance of file modi:~ (c.g.~· ... -:113-rc·r·-~ · ~ \1
"w," "a") when opening and manipulating files. .
an:J prov 1~c._ai~ cxampk_fnr ca_~}.1 mode. I ;

Scheme: I l a) Definition - l M

Scheme: 10 a) Explanation of scope and life time of variables - 3M

Example of local and global variables - 2M

IO b) Implementation library system using structures, functions and files - 5M

\;NJT-\' -- - ... - ' _... ,
l !l .i\ Fxplnin tlw concepts or vannhlc scope and i I 2 j C 01 < \l

I · hfctirnc 111 ,, p!<'g.r.1m111inJ2 lan1'ua~2c and 1•
pro, idc cx.unpl,», ot' !n\.·:il .111d ;;loh;d , ariahk, · l
Ill l ·. I .. .

h) You .ue designing a progr.un to manage ~ L-4 · c··o4 J 5 \.I
I library's catalog. Create a C program that ! I
defines a function to acid hooks to the L::1talog.' I
The tunction should take book details as 1

P<irJmctcrs and append tu ~ 1'1 le.. !
I

I

..J

OR
9fa) You arc developi~g ·a- p-r~ram to manage-a 1· L4 ~ d~ library's book collection. Design a C program

, :,w that uses a structure to represent book f ·
-~. infonna~io11.:.._~}:l_ch as title, author, ~d l

l'i=r.~~~~;"",; r· -1- 1,~ul1{,atio;; year. 1,npkmenl-functi~,nalilic~ lo

I
I I I irdd and search liH" hook s in the collection.

· In .lude the ·,,ch.: and cxpl.un how structures arc I
! Ju,'d t,, this purpose. . . f . ·i
b). Di~ ·us~ the '!'-i!ln,li(::Ut\.'l' 1\1: 111111 plllll(.l:r~ and ~IH' 1 Lr20~:

l { ll'nt1.1l l~SllCS il~Sl)l'I.Jkd with \ISlllg;

'u:lln1t1~-tli1cd pointers. _ _ . : !
Scheme: 9 a) Implementation library system using structure and functions - SM

9 b) Significance of nulJ pointer - 2.5M

Issues with wild/dangling pointer - 2.5M

Implementation of the program - 4M

11 b) Description of File opening modes - 2M

Example (Syntax) for each mode- 3M

S.No. Top-Down Approach Bottom-Up ftpproach

In this approach, the problem is
. Jjer problems are

I.
In this approach, the sma

broken down into smaller parts. solved.

It is generally used by structured
. . t,jeCt oriented It is generally used with o

2. programming languages such as C,
. di oh as C++, Java, programmmg para 1gm su

COBOL, FORTRAN, etc. Python, etc.

It is generally used with 1
. 11 d . st. f!, .modules. t is genera y use m te rn

3. documentation of module and
debugging code.

5. lt contains redundant information.
. t information.

It does not contam redundan

6. Decomposition approach is used here. C . . h . eO here. omposinon approac rs us

Any two differences - 2M

Ans: The main difference between the top-down and bottom-up approaches is the process's

starting point and focus.

PAJ.CT - ,.\

(Comauon for LL URANCfll~S)
. Max. Marks: 70 ~~~~~--------~~~~~~~~~~~----~------- Not c: 1. Tins question paper contains two Parts A and B. · es 2 ..

2. Pan-A contains ·10 short answer questions. Each Question cam s
Marks · · · . . from each unit.

3, Part-B contains 5 essay questions with an mtcmal cho1Ct;
Each Question cam cs 10 marks.

4. AU Darts of.Question paper must he answered m one pJ~ce.

Brackets arc a I ways required.

At least once the statement(s) is executed.

Statcmcnus) is executed atlcast once.
thereafter condition is checked.

do-while

Any two differences - IM

Example-1M

1 ~
\1t1•fl ,11\li ;1 °\h1-\l.,"hi.l~11

, ,1 ,, hen ~ ou ""'mild

The flowchart follows rules to be constructed.

. . h .. I ,·cpres"'11tation of that A flowchart is Just a grap ica "
logic.

A flowchart is simple to construct.

A flowchart is hard to debug.

A flowchart is easy to understand.

In the flowchart. symbols/shapes arc used.

Flowchart

A flowchart is a diagram created with different
shapes to show the now of data.

Any two differences - 2M

--

If there is a single statement. brackets are
not required.

It might occur statcment(s) is executed zero
times, If condition is false.

Condition is checked first then statcmcnus)
is executed.

while

Ans:

Le) ()itll.·rcn11.1h' bctw cc u ., ''~· h.l.
ltH'P· .md PH'\ 11.k ,111 l'\:;unpl1•

· choose one u\ er the Hlh er.

The algorithm is the pseudo-code for
7. the program.

The algorithm docs not fol lov, a11)
6. rules.

5. The algorithm is difficult to construct.

3. In the algorithm, plain text is used.

4. The algorithm is easy to debug.

An algorithm is a step-by-step
I. procedure to solve a problem.

The algorithm is complex to
2. understand.

S. No A lgorithrn

I h) Dtllt.'J~f'lt1~1k hi.:h, l't 1 ,d_• \• .1':·11 Ii·.! ILi'.\ Lit 11·

Ans:

l ::: < ·n I

7. The implementation depends on the Data encapsulation and data hiding is
programming language and platform. implemented in this approach.

if-else statement:

}

if statement:

The if statement is a basic conditional statement that allows you to execute a block of code
only if a certain condition is true. The general syntax of an if statement is as follows:
Copy code

if (condition) {

II Code to be executed if the condition is true

Any two differences - 1 M

and I U ;co ,I
._.,......._.,_ __ ~ 4

} while (count<= 5);

r-l .'<i·> ~tipf~t~: *~c· d1/rercnce between the- "ir' s1akmen1
~--·f fhl::_ t{~r~~~-,, Stafemenl fn t~~~[1h~~~C~.:_CUlion.
Ans:

count++;

II Using do-while loop

do {

printfiDo-while loop iteration %d\n", count);

}

Choose between while and do-while based on your specific requirements. If you want to
ensure the loop body is executed at least once, use do-while. If you want the loop to execute
only if the condition is true initially, you can use while.

II Using while loop

while (count<= 5) {

print1{"While loop iteration %d\n", count);

count++;

do {
statement(s);
}while(condition);

while(condition)
{
statement(s);
}

do-while loop is exit controlled loop. while loop is entry controlled loop.

variable may be initialized before or within
the loop.

Variable in condition is initialized before
the execution of loop.

do-while while

Address

Value r-- s I t , - r l i l n I g I \0 I
I _... 100 101 102 103 104 10s 106

str

char str(7] = "String";

A string is represented by one dimensional character array in memory.

In computer programming, a string is traditionally a sequence of characters, either as a literal
constant or as some kind of variable.

Memory Model (diagram)- IM

Definition - IM

Ans:

I .c) In prop.ramming, what i.._ a -;trin'g.. and how is it
. typicallv rcpn.:~cn!~.9 ~ 12_1~1!10T)'~ ·-·-- j l. l

(Statement a: Statement b: J

'else

(Statement x: Statement y: }

if ... else

if (condition x) ,,
11

{ Statements: } -------
The Syntax is:

I

, if (condition x)

~he Description is:
jt n the case of such a statement, when the
[available condition is true, then there occurs
'I
•Ian execution of a certain group pf' statements.
: In case this available condition turns out to
be false, there occurs an execution olthc

,statement specified in the else part. ,~---------------~-----~ -~~

!°The Description is:
I

In the case of such a statement. when the
! available condition is true, there occurs an
, execution of a certain block of' code.

The Syntax is: ,r

;!Description Type of Decision Syntax
Control
Statements in C

} else {

II Code to be executed if the condition is false

The if-else statement extends the if statement by providing an alternative block of code to be
executed when the condition is false. The general syntax is as follows:

if (condition) {

II Code to be executed if the condition is true

pointerVar = &anotberVar;

int anotherVar = 10;

int *pointerVar;

Any two differences - IM

Memory model (diagram)- 1 M

The main difference between a pointer variable and a regular (non-pointer) variable lies in
how they store and represents data.

Regular Variable: Stores the actual data it represents.

Pointer Yariable: Stores the memory address of another variable.
I\ ..

Regular.Variable: Directly holds a value of a specified data type.

int regular Var= 42;

Pointer Variable: Holds the memory address of a variable of a specified data type.

Ans:

~,...._~~· . ,...... ' . , - ~
· J .g).: D,iffc~tiate .hetw.cen a pointer variable and a regular} L "> C I

;L. -·~-i~~:3rI~~lJ:: ~n tt~s o_f ~ow _tl}~Y store data. , ._. ; _c~

Performance: Knowing the size of an array at compile time allows the compiler to optimize
code more effectively . .

Bounds Checking: While C itself doesn't perform bounds checking, specifying the size allows
programmers to understand the valid range of indices for the array.

Compile-Time Validation: The size specified during array declaration is used for compile
time checks.

int myArray[5]; II Declaring an array of integers with size 5

In programming languages like C, declaring the size of an array when it is created serves
several important purposes:

Memory Allocation: When you declare an array, the compiler needs to allocate a specific
amount of memory for that array.

Indexing: Arrays in Care zero-indexed, meaning the first element has an index of 0, the
second has an index of I, and so on.

Declaration with Explanation - 2M

Ans:

-
I.() Whai is the purpose of declaring the size of an array

L 1 i en t _, JH11 yrn1 create it in a programming-Languag_c like C? _I ·--

. 1.i) l What t» ;1 luncti1111 in prot!li11ntn111g .• ind \\Ii~ i~ it used? I.I (.'i 1j
l

Syntax:

void free(void "ptr);

ptr: A pointer to the memory block to be deallocated.

Usage:

int *dynamicArray = (int*)malloc(IO * sizeof(int));

II Use dynamicArray as needed

free(dynamicArray):

Deallocates the memory block previously allocated for dynarnicArray .

Syntax:

void* malloc(size_t size);

size: The number of bytes to allocate.

Returns a void pointer (void*) to the beginning of the allocated memory block.

Usage:

int "ptr = (int*)rnalloc(5 * sizeof(inn);

free() Function:

Purpose: Used to deallocate memory that was previously allocated using malloc() or a related
function.

malloc() Function:

Purpose: Stands for "memory allocation." ft is used to allocate a specified number of bytes of
memory during the program's execution.

In the C program 111 ing language. ma I loc() and lrcct) arc functions used for dynam ic memory
allocation and deallocation, respective I). They play a crucial role: in managing memory at
runtime.

Explanation malloc()- IM

Explanation free() - IM

r fh) l Explain the ~otc" of ii1~~tion." ITk~ ·n~allo~()' a-t;d 7rroc(f 1~
t,. __ .li1!_<lyna_mic !21.~n.!~!Y.. a~ocation in_c;.:._ _ __ • .. ,d,,

1 ,.. < ·n I

Ans:

Address: 7866321

Normal variable Poin tcr variable

_ _j I
'-

I

. 78~_632 ~-- ·J
Address: 7865321

int b int • a

With this method, using addresses we would
have access to the actual variables and hence
we would be able to manipulate them.

ln this method, the address of actual
variables in the calling function is copied
into the dummy variables of the called
function.

While calling a function, instead of passing
the values of variables, we pass the address
of variables (location of variables) to the
function known as "Call By References.

Call By Reference

With this method, the changes made to the
dummy variables in the called function
have no effect on the values of actual
variables in the calling function.

Jn this method, the value of each variable
in the calling function is copied into
corresponding dummy variables of the
called function.

While calling a function, we pass the
values of variables to it. Such functions
are known as "Call By Values".

Call By Value

In programming languages like C, there are two common methods for passing arguments to
functions: call-by-value and call-by-reference. These methods determine how changes made
to the parameters within the function affect the original values passed from the calling
function. ·

Ant two differences - 2M

Ans:

Maintenance: Changes or updates can be made to individual functions without affecting the
rest ofthe program, simplifying maintenance.

~~,t.tlp91~\ipii~~b)l;~~~c-~~~!!!.£~~r~~~l:~~~.~:

Why Functions are Used:

Modularity: Functions allow breaking down a program into smaller, manageable modules,
making the code more organized and easier to understand.

Reuse: Once a function is defined, it can be called from different parts of the program,
promoting code reuse and reducing redundancy.

Readability: Functions improve code readability by encapsulating complex logic into well
named and self-contained units.

Functions provide a way to modularize code, making it more organized, readable, and
reusable.

Usage- JM

In C programming, a function is a self-contained block of code that performs a specific task
or set of tasks.

Definition - IM

Ans:

Call by reference is risky as it allows direct
modification in original data

This method is preferred when we have to
pass a large amount of data to the function.

Pointer variables are necessary to define to
store the address values of variables.

In call by reference, we can alter the values
or variables through function calls.

Call By Reference

Call by value is considered safer as
original data is preserved

This method is preferred when we have to
pass some smal I values that should not
change.

Values of variables are passed by the
Simple technique.

In call-by-values. we cannot alter the
values of actual variables through funct ion
calls.

Call By Value

An assignment operator is used for assigning a value to a variable. The most common
assignment operator is =

C Assignment Operators

C programming has two operators increment ++ and decrement -- to change the value of an

operand (constant or variable) by I.

Increment ++ increases the value by I whereas decrement -- decreases the value by I. These

two operators are unary operators, meaning they only operate on a single operand.

C Increment and Decrement Operators

5 % 3 is evaluated to 2 remainder after division (modulo
division) %

5 I 3 is evaluated to 1.0 division I

5 * 3 is evaluated to 15 multiplication *

5 - 3 is evaluated to 2 subtraction or unary minus

5 + 3 is evaluated to 8 addition or unary plus +

Example Meaning of Operator Operator

An arithmetic operator performs mathematical operations such as addition, subtraction,

multiplication, division etc on numerical values (constants and variables).

In the C programming language, operators are symbols used to perform operations on
variables and values.

2 a) Explanation of any 5 types of Operators - SM

Ans:

I

' I
J

PART-B

expression results true or false. Logical operators are commonly used in dee is Lon m_ai.. i11g_D1 C

An expression containing logical operator returns either O or I depending upon whether

C Logical Operators

5 <= 3 is evaluated to O Less than or equal to <=

5 >= 3 is evaluated to I Greater than or equal to >=

5 != 3 is evaluated to I Not equal to '=
5 < 3 is evaluated to O Less than <

5 > 3 is evaluated to I Greater than >

5 == 3 is evaluated to O Equal to

Example Meaning of Operator Operator

Relational operators are used in decision making and loops.

Relational Operators:

A relational operator checks the relationship between two operands. If the relation is true. it
returns I: if the relation is false, it returns value 0.

Operator Example Same as

= a=b a=b

+= a+=b a =a+b

-- a-= b a= a-b

= a= b a= a*b

/= a/= b a= a/b

o/o= a%=b a=a%b

int a, c = 5, d;

Comma operators are used to link related expressions together. For example:

Comma Operator

Other Operators

Shift right >>

Shift left· <<

Bitwise complement

Bitwise exclusive OR /\

Bitwise OR

Bitwise AND &

Meaning of operators Operators

Bitwise operators are used in C programming to perform bit-level operations.

During computation, mathematical operations like: addition, subtraction, multiplication,

division, etc are converted to bit-level which makes processing faster and saves power.

C Bitwise Operators

If c = 5 then, expression !(c==5)
equals to 0.

Logical NOT. True only if the
operand is O

If c = 5 and d = 2 then, expression
((c=5) II (d>5)) equals to l.

Logical OR. True only if either one
operand is true II

If c = 5 and d = 2 then, expression
((c=5) && (d>5)) equals to 0.

Logical AND. True only if all
operands are true &&

Example Meaning Operator

Disadvantages of I .ow-Level Languages

• They arc better at performance compared to high-level languages as the~ prox ide
direct control over th\.': computcrs hardware.

o I h~:v arc better al memory management.
• Debugging is comparatively easy in low-level language.

Advantages of l.ow -Level Language

Ad vantages and Disadvantages

It is not commonly used now-a-days in
programming. It is used widely for programming. 9.

It needs assembler for translation. It needs compiler or interpreter for
translation. 8.

It is machine-dependent. It can run on any platform. 7.

It is non-portable. It is portable. 6.

It is complex to maintain
comparatively. It is simple to maintain. 5.

Debugging is complex comparatively. Debugging is easy. 4.

It is tough to understand. It is easy to understand. 3.

Low level language is high memory
efficient.

High level language is less
memory efficient. 2.

It is a machine friendly
language.

It is programmer friendly
language. 1.

Both of these are types of programming languages that provide a set of instructions to a
system for performing certain tasks, Though both of these have specific purposes.

2 b) any 3 differences for each - 3M

Advantages and Disadvantages - 2M

structure, etc).

The sizeof is a unary operator that returns the size of data (constants, variables, array,

The sizeof operator

Represents a single character, like a letter or a digit.

String:

Represents a sequence of characters.

Array:

Represents real numbers with a fractional part.

Character:

Float/Double:

Common data types include:

Jnteger:

Represents whole numbers without a fractional part.

In programming, a data type is a classification that specifies which type of value a variable
can hold and what operations can be performed on that value. Data types define the
characteristics of data and provide a way for the computer to interpret, store, and manipulate
that data.

Ans:

.. ,.,.,.,..._,..._...,.,.~ - : · ' · on
;-J° j ~>" r~i~\~·;,:· tl1c. concept ol'. data typ.es and th~fij L2
1, . 1 \t. f 1{J,tf>9U-WfC in programm1!1g. Pnn~1dc cx::i.mpJc: 1
l 1 , 9[snuauons where choosing the right data type I
l . I :J l~r c~cial:!£!: Qn:>8ram efficiency.:_ _ .- t _
J b), \\!rite an algorithm -and draw a flow chart to L2 CO l 5 M
f _ .L l c~1l~~!~ the sum of first 10 na~ra.1 !!':l_m_b_c_rs_.--:~:=':"".~===~.::;:=:x:1i

3 a) Data types importance - 3M

Situation examples - 2M

• The programmers must know deeply about computer hardware.
• They are sometimes time-consuming because we need to manage the memory and

complexity of the instructions.
• They are comparatively Jess portable than high-level languages.

Advantages of High-Level Language

• High-level languages provide a higher level of abstraction, allowing programmers to
focus on the logic and functionality of their programs rather than the intricate details
of hardware or low-level operations.

• Code written in high-level languages is often more readable and understandable.
• High-level languages offer built-in functions, libraries, and frameworks.

Disadvantages of High-Level Language

• High-level languages are generally slower than low-level languages in view of
execution.

• High-level languages require more memory than low-level languages.

Flowchart: Provided that N as IO

Algorithm: Sum Of First IO Natural Numbers

Step I: Start

Step 2: Set n = IO

Step 3: Calculate S = (n * (n + I)) I 2

Step 4: Display S

Step 5: Stop

(n *(n-1))/2

n natural numbers is given by the formula:

To find the sum or the first IO natural numbers. you can use a simple algorithm known as the
arithmetic series formula. The sum of the first

3 b) Algorithm to find sum of 10 natural numbers - 2.SM

Flowchart to find sum of 10 natural numbers - 2.SM

Example: Using a float or double data type for floating-point arithmetic operations rather
than a less precise data type like int to maintain accuracy.

Scenario: Implementing collection of homogeneous data elements.

Example: Choosing an appropriate data type for elements in a collection, such as using a
specific array instead of multiple variables can impact memory usage and retrieval times.

Scenario: Implementing collection of heterogeneous data elements.

Example: Choosing an appropriate data type for elements in a collection, such as using
structure or union instead of multiple variables of di ffcrent data types can impact memory
usage and retrieval times.

Scenario: Reading from or writing to files.

Example: Choosing appropriate data types for reading and writing data from/to files, such as
using binary formats for efficiency, can impact file 1/0 performance.

Represents data types created by the programmer.

Choosing the right data types is crucial for program efficiency in various situations,
especially when it comes to memory usage, computational speed, and overall performance.

Scenario: Performing complex numerical calculations, such as simulations or scienti fie
computations.

User-defined:

Represents a memory address, used for low-level memory manipulation.

Represents a collection of clements of the same data type.

Pointer:

}

}

printf("%d\t", number);

continue;

int number= O; II Start with the zero

while (number c= 50) {

number+= I; II Move to the next number

if (number% 2 ""= O){

if (number % 6 =:::: 0)

int main() {

r - - ----n---,-- - > • I

L: .: L~ :~~ ~~-- ··----~NJT-11 · --rur1- .J·
j 4 ,· .u_i1 Creal .. e,~ e program that employs a "whiJe11 loop L3 C02 5 M
~ · . t 10 pnnl ail even numbers between l anti 50, but
~ i '. skips.~ny numbers that :111. ti" 1-..ihk by 6 using I
J f : the "continue" statement Prox idc the code and . . j J
f ~ .~la de!,ajL~ ~.:~~"mati_on. __ - ..,.. __ L_
i J b) t\Vrite ~·Cprogram that USI.:~ a "fur'' loop to find L3 coz] 5 M
f , ~ . t~e -:fi~t.primc number between l 00 and_ 200.

1
L . ..

~ ! .Implemenr the "break" statement to e~Jt the I . J
·l · J too · one~ the prime number is found. _ ~ ~

Ans: 4 a) Program using while loop, if and continue - 3+ 1+ l = SM

/IC Program to print all even numbers between I and 50 but not divisible by 6

#include <stdio.h>

Stop

Pnnt sum

T >-----' sum=sum•,
1=1• 1

1-= 1. sum= 0

Start

break; II No need to continue checking if it's not prime

isPrimc = O;

II Check if the current number is prime

for (inti= 2; i <= num I 2; i++) {

if (num % i == 0) {

int is Prime= I;

int main() {

int start = I 00;

int end = 200;

II Check each number in the range

for (int num = start; nurn <= end; m1111++) {

#include <stdio.h>

Ans:

4 b) Program using nested for loop, if and break -3+1+1 = SM

This code will print all even numbers between 1 and 50 (excluding multiples of
6) in C.

Explanation:

In this C Program:

We start with number initialized to O (the first even number).

The while loop continues as long as number is less than or equal to 50.

Inside the loop, an if statement checks if the number is even (number % 2 == 0)
and again in nested if we check the divisible by 6 (number % 6 = 0).

lf both conditions are true, the number is not printed.

Otherwise the number will be printed using printf.

The loop then increments number by 1 in each iteration to move to the next
number.

2 4 8 10 14 16 20 22 26 28 32 34 38 40 44 46 50

Output:

return O;

Efficiency: In some cases, a switch statement can be more efficient than a series of if
statements. The compiler can optimize the switch statement, making it faster to execute.

Using a switch statement over continuous if statements in C has several advantages,
especially when dealing with multipJe conditional branches. Here are some of the key
advantages:

Readability: Switch statements can make your code more readable and concise, especially
when dealing with multiple conditions. It provides a clear structure and is easier to
understand than a series of nested if statements.

5 a) Advantages of switch statement - 2.5M

Demonstration with example program - 2.SM

Ans:

Output:

The first prime number between I 00 and 200 is: 101

}

return O;

}

}

printf("The first prime number between %d and %d is: %d\n", start, end, num);

break; II Found the first prime, no need to continue

II If the number is prime, print it and break the loop

if (isPrime == 1) {

}

printf("Option I seleeted.\n");

break;

switch (option) {

case I:

int option = 2;

int main() {

#include <stdio.h>

}

} else {

II Code for default case

} else if (variable== 2) {

II Code for case 2

if (variable== I) {

II Code for case I

II Equivalent using if statements

II Code for default case

default:

break;

II Code for case 2

break;

case 2:

II Code for case I

case I:

II Using switch statement

switch (variable) {

Code Maintainability: Switch statements can be easier to maintain, especially when new
cases need to be added. Modifying a switch statement typically involves adding or removing
case labels, which is more straightforward than modifying a series of if statements;

Switch Fall-Through: Switch statements allow for fall-through behavior, where multiple
case labels can share the same code block. This can be useful in certain scenarios where you
want to execute the same code for multiple cases without duplicating it.

}

Output:

Enter any number: 5

Enter any number: 2

printf("The Sum is: %d", Sum);

return q;

}

printf(''Enter any number: ");

scantf'%d", &n);

if (n>=O)

Sum+= n;

else

break;

while(I)

{

5 b) Demonstrate of Program with while Joop, if and break - SM

Ans:

#include <stdio.h>

int maim) {

int Sum= O;

int n;

}

Output:

Option 2 selected.

return O;

}

case 2:

printf("Option 2 selectcd.\n");

break;

default:

printf("lnvalid option.\n");

#include <string.h>

int main() {

O if strings are equal

>O if the first non-matching character instr I is greater (in ASCII) than that of str2.

<O if the first non-matching character in strl is lower (in ASCH) than that of str2.

The strcmp() function is defined in the string.h header tile.

#include <stdio.h>

Return Value Remarks

int strcmp (const char" strl, const char" str2);

strcmp() Parameters

The function takes two parameters:

str I - a string

str2 - a string

C strcm p() Prototype

The function prototype of strcmp() is:

The strcmp() compares two strings character by character. If the strings are equal, the
function returns 0.

C strcmp()

String manipulation is a crucial aspect of programming with significant importance in various
domains. Strings play a vital role in any programming language. Properly understanding
string manipulation techniques can help developers easily handle tricky situations.

6 a) Ans:

t --
"' \ l

UNIT-IJI

I; a) 1 Di~ .uss the impor1,llll'C-·or string manipulation' c~ ·~c(}5 I

I! in progrununing. including tasks like · ,
j comparison, concatenation, and substring I
i I extraction. Provide a. code cxa_mpk in <. • that j :. ! dcmo~1stralcs the. c ~tnng_ operations.. __ _ ·-r .

, h)
1

Explain the :1<.lvantagc~ 11 r using a t wo- l L:? l ('(,.,
1

• dimensional _arr,,y O\ er a unc-duucnsionul array (Jl
when ,.., , 11"h.11l'..!. ,, 11'1 t.ibulnr data or l'.f'lci'i , . ~
Prov idl..' rcal-« rn Id l'\;!l11;)k \\ lllTl' t \\ n- , •
dtmt·n:--u,n,ll an :t\ .irc u:--,:f'ul !

• e .. L......-.

Enter any number: -5

The Sum is: 10

Enter any number: 3

char strJ l 100) = "This is", str2[] = "programiz.com";

II concatenates strl and str2

II the resultant string is stored in strl.

#include <string.h>

int main() {

Example: C strcat() function

#include <stdio.h>

The strcat() function concatenates the destination string and the source string, and the result is
stored in the destination string.

source - source string

C strcat()

The function definition of strcat() is:

char *strcat(char *destination, const char *source)

It is defined in the string.h header file.

strcat() arguments

As you can see, the strcat() function takes two arguments:

destination - destination string

,. ln the program,

• strings strl and str2 are not equal. Hence, the result is a non-zero integer.

• strings strl and str3 are equal. Hence, the result is 0.

Output

strcmptstrl, str2) = 1

strcmp(str I, str3) = 0

}

return O;

char strl [] = "abed", str2[] = "abCd". str3[] = "abed";

int result;

II comparing strings strl and str2

result= strcmp(strl, str2);

printf("strcmp(strl, str2) = %d\n", result);

II comparing strings strl and str3

result= strcmp(strl, str3);

printf("strcmp(strl, str3) = %d\n", result);

I , t ~ • t I
,•• ,(,._ I --.

#include <string.h>

int main() {

char src[40);

char dest[12];

memset(dest, '\O', sizeot{dest));

strcpy(src, "This is tutorialspoint.com");

strncpy(dest, src, IO);

This function returns the pointer to the copied string.

Example

The following example shows the usage of strncpy() function. Here we have used function
memset() to clear the memory location.

#include <stdio.h>

dest -This is the pointer to the destination array where the content is to be copied.

src - This is the string to be copied.

n -The number of characters to be copied from source.

Return Value

char *strncpy(char *dest, cons! char *src, size_t n)

Parameters

Following is the declaration for strncpyt) function.

Declaration

The C library function char *strncpy(char *dest, const char *src, size_t n) copies up ton
characters from the string pointed to, by src to dest. In a case where the length of src is less
than that ofn. the remainder of dest will be padded with null bytes.

strncpy()

Note: When we use strcat(), the size of the destination string should be large enough to store
the resultant string. If not, we will get the segmentation fault error.

program iz.com

Output

This is programiz.corn

}

return 0;

strcat(str J, str2);

puts(str I);

puts(str2);

Spreadsheet Applications

Image Processing

Graphics Programming

Crossword Puzzles and Word Grids

Sudoku Solvers

Matrices in Mathematics

Ease of Access: Accessing elements in a two-dimensional array is often more straightforward
and readable, especially when dealing with data organized in rows and columns.

Simplified Code for Grids and Game Boards:

For applications involving grids, game boards, or maps, a two-dimensional array provides a
natural representation.

Spatial Relationships:

Two-dimensional arrays are beneficial when dealing with spatial relationships or coordinates.
For example, in graphics programming, each element in a 20 array could represent a pixel on
the screen with x and y coordinates, simplifying operations like drawing shapes or images.

Real-world Examples:

When dealing with tabular data, such as spreadsheets or databases, a two-dimensional array is
often more suitable. Each row can represent a record, and each column can represent a
different attribute or field.

Tabular Data:

Two-dimensional arrays have several advantages over one-dimensional arrays in certain
situations. Here are some of the key advantages:

Syntax:

data_ type array_ name[rows J (columns];

Matrix Representation:

Two-dimensional arrays provide a natural and convenient way to represent matrices. In
applications like graphics, image processing, and mathematical computations, matrices.

Ans:

6 b) Advantages of 20 arrays - 3M

Real-time Examples - 2M

Output:

Final copied string: This is tu

}

return(O);

printf("Final copied string: %s\n", dest);

Elements in an array are stored in contiguous memory locations. This can lead to better cache
locality, which may result in improved performance for certain operations compared to more
scattered data structures.

Sequential Access:

Arrays provide sequential access to elements, making it easy to iterate through the list of
customers. This is beneficial when you need to perform operations that involve processing
each customer in a specific order.

Simplicity and Efficiency:

Arrays are simple and efficient data structures for storing a fixed-size list of elements. They
offer constant-time access to any element using the index. making retrieval and modification
ope rat ions straightforward.

Memory Contiguity:

Advantages of using an array:

---------·--- : 1.1<.1nnr:1 V'./:ir;t:-~:f. t ,. .. - - - - - - - -- - - -)

·,
\
\
I

I

arr [2]

arr [OJ
....
' ...

' arr (1)

9 S 6 7 B 3 4 0

When maintaining a list of customers in a business application, the choice of data structure,
such as an array, comes with its own set of advantages and disadvantages.

Two-dimensional character arrays are best suitable for this application.

char variable_name[rows][columns] = {list of string separated by comma};

Memory Representation of an Array of Strings

7 a) Ans:

7 ' a) i lmauinc vou need l\1 111~111.lj.!.(' u I 1\,l of t:Ul'-llHllt.:rl l) l f ,: \ l
l ~ • - I

names in a h11..,1111:,, .ipplicuuon. D1sL·u~~ the i
. ad,·,m1agt:~ .111i1 dt··;l.;,. .tlli:l!..!1.· ,r u,inµ .111 .1n:1y I

• . I
Ior th1~ puqv,. · l

. l- -

h) You have Lu1 ,ilt.t\ 111 1nll:21.·r:-. h:p11.·-.1.·11t1ng the L~ i '! }, v ', •
1

, daily tcmpcraturc-. llH ,l week (111tk,O: .'trnday.:
index I: Mond:1y and ,<1 on). Wruc :1 (• program I

, that finds and prmtx rbc day ,, iil: the highi.:st i
I temperature and the temperature itxcl f. J__ ..

OR
. - -- --·- - ---- -- -~~-· i----

Game Development

Database Systems

Geographic Information Systems (GJS)

int main().{

int temperatures[7] = {32, 28, 35, 30, 33, 29, 31}; II Replace with your actual
temperatures

int maxTemperaturc = tcmpcratures[O]; II Initialize with the temperature of the first day

int dayWithMaxTempcraturc = O; II Initialize with the index of the first day

for (int i = 1; i < 7; +ti) f
if (temperatures[i] > maxTemperature) {

7 b) Demonstration with example program -SM

Ans:

#include <stdio.h>

Inserting or deleting customers in the middle of the array can be inefficient, as it requires
shifting elements to accommodate the change. This operation has a time complexity of O(n),
where n is the number of elements in the array.

Wasted Memory:

If the array is allocated with a size larger than the actual number of customers, memory may
be wasted. This is especially true if the size is chosen to accommodate potential future growth
that may not occur.

Sparse Data Representation:

If there are gaps or empty slots in the array due to deletions, the array may not efficiently
represent the actual number of customers. This can lead to inefficient memory usage.

Limited Dynamic Behavior:

Arrays do not dynamically resize themselves, and managing dynamic behavior, such as
accommodating fluctuating numbers of customers, requires additional logic and potentially
more complex data structures.

Arrays have a fixed size, and if the number of customers exceeds the allocated size, resizing
the array becomes necessary. This process can be inefficient, especially if it involves copying
clements to a larger array.

Inefficient Insertions and Deletions:

If the number of customers is known to be fixed or can be determined in advance, using an
array al lows you to allocate a fixed amount of memory. This can be advantageous in terms of
memory management and resource allocation.

Disadvantages of using an array:

Fixed Size Limitation:

Fixed Size:

Array elements can be accessed directly using indices. This makes it easy to locate and
manipulate specific customers based on their position in the array, facilitating quick retrieval
and modification.

Index-Based Access:

t ,), , ·n,
.

j"-t \. , ..

end= arr+ (length - I); II Points to last element of array

start= arr; II Points to first element of array

}

Iorfint i = 0: i < length; i++){

printf("%d ", arr[i]);

II Calculate the size of the array

int length = sizeof(arr)lsizeof(arr[O]);

printf("Original Array: ");

int "start, *end, temp;

int arr[]= { 1. 2, 3, 4. 5};

int maim) {

II Initialize the array

#include <stdio.h>

II C Program to reverse an array using pointers

Ans)

"I \ 1

lJ:'HT-1\'
8 a) Design a C program that reverses the elements I Lff Cc)-~

of an inteucr array usinu pointers. Provide the
I "' -

' code and a step-by-step explanation or the I
. _ . :1}g_t)ritl~m. _ _ l -::, . . .
, h) • Explain the concept ol pointer arithmetic. !· L: i (r l.,

l__:_.....1._ mustratc with an exam~ .PJ~gram._ __ _ .' _ 1. I
8 a) Program to reverse array elements -3M

Step-by-step Explanation - 2M

Output:

The day of the week with the highest temperature is day 3.

return O;

II Adding J to the index to get the actual day (assuming days are numbered from I to 7)

printf("The day of the week with the highest temperature is day %d.\n",
dayWithMaxTemperature + I);

}

}

maxTempcraturc = temperaturcs[i];

dayWithMaxTempcrature = i;

Pointer Arithmetic is the set of valid arithmetic operations that can be performed on pointers.
The pointer variables store the memory address of another variable. It doesn't store any
value.

Ans:

8 b) Explanation of pointer arithmetic- 2M

Example program - 3M

I. lnitialize two pointers "start and "end of the same data type as of the array.
2. Initially, assign the array itself to the pointer *start so that it can point to the first

element of the array.
3. Add the (size of the array - I) to the array and assign it to the pointer "end so that it

can point to the last clement of the array.
4. Run a while loop until the pointers "start arid "end point to the same address.
5. Inside the while loop, swap the clements pointed to by ,;,start and *end.
6. Increment *start by I so that it can point io the next element or the array and

decrement *end by I so that it can point to the previous element of the array in each
iteration of the while loop.

To reverse an array using pointers in C, we can use the following algorithm:

Output:

Original Array: J 2 3 4 5

Reversed Array: 5 4 3 2 1

~·

}

return O;

}

printf("%d '', arr[i]);

printf("\n.Reversed Array: ");

for(int i = O; i < length; i++){

}

start++; II Move to next address

end«; II Move to previous address

II Reverse the array

while(start < end){

II Swap items stored at *start and *end

temp= *start;

*start= *end;

*end= temp;

'.,, .. ~---, ... 'I\

printf("Pointers are Equal.");

if (p == q) {

int x = p - q;

printf("Subtraction of p & q is %u\n", x);

printf("Pointer p after Subtraction: ");

printf("%u \n". p);

int *q. k = 5;

p = p - 3;

p = p + 3;

printf("Pointcr p after Addition:");

printf("%u \n". p);

value
printf("p-- = %u\n", p); //p-- = 6422288 -4 II restored to original

p--;

printf("p++ = %u\n", p); //p++ = 6422292 +4 // 4 bytes

p++;

printfr'p = %u\n". p); // p = 6422288

int "p = &a;

int a= 22;

//pointers arc incremented and decremented by the size of the data type they point to

int main()

II pointer increment and decrement

Addition of integer to a pointer

Subtraction of integer to a pointer

Subtracting two pointers of the same type

Comparison of pointers

#include <stdio.h>

Hence, there arc only a few operations that arc allowed to perform on Pointers in C language.
The C pointer arithmetic operations arc slightly different from the ones that we generally use
for mathematical calculations. These operations are:

Increment/Decrement of a Pointer

II Structure to represent book information

struct Book {

char title[50];

char author[50];

int publicationYear;

#include <string.h>

#include <stdio.h>

Ans: 9 a) Implementation library system using structure and functions -
SM

p = 3 181500672

p++ = 3181500676

p-- = 3181500672

Pointer p after Addition: 3181500684

Pointer p after Subtraction: 3 l 81500672

Subtraction of p & q is 4015551024

Pointers are not Equal.

;r.9-,~-I ~:u~· developing -a -pro~~ io oiaiii;e· ~ I 1:41 (~~I 5~~
1:· 1 •• •1 Jibrar)."s book collection. Design a C program I , !· 1 • .,~ ft~Jr I ~hat uses a structure to represent book I . : 1 ·,
t~~an~ti9~-7~ as ti~le, _au~r, . and_L_:__ «.:_ __ .J ,1 r~ . .r::- r pul;Fic~A ycar~·Impkm~nt functionalities to . ~ [~
~ 1 ! ~Jd·-and ,icar'-1b for book~ in the, col!cction. . . 1 .

: .r lnehrde thl!· code and explain how structures are ; I
l•: J u.\~d ~?r Jllis purpost:. _ _ . . . __ -+ _ . ;
f b) J Disc~~~ the ~ignific.u11cc o~nu]J poin~crs and !he L2 C03 ~5 M

, potc»W\1. issues associated · with using . .
t I ' • ;:;1 • d ' I : ·.· e , . _: ~l.;l:!_tl.!!!~~- Otnt_~!;<;, ___,__.:_..__.;.;.:;..__L!.J · •

Output:

}

return O;

}

printf("Pointers are not Equal.");

else {

for (inti= 0; i < numBooks; ++i) {

if (strcmptcollection] iJ.title, searchTitle) == 0) {

printf("Book Found!\n");

printf("Title: o/os\n", collection[i).title);

printf("Author: o/os\n", collection[i].author);

printfi''Publication Year: %d\n", collection[i].publicationYear);

found= I;

break;

II Function to search for a book by title

void searchBook(struct Book collection[], int numBooks, const char *searchTitlc) {

int found = O;

}

(*numBooks)++;

printf("Book added successfully!\n");

} else {

printf("Error: Collection is full. Cannot add more books.\n");

printf("Enter publication year: ");

scant("o/od", &collection(*num Books).pub I ication Year);

printt'("Enter author name: ");

scanf(" %["\n]", collection[*numBooks].author);

II Function to add a book to the collection

void addBook(struct Book collection[], int *numBooks) {

if(*numBooks < 100) {

printf("Entcr book title: ");

scanf]" %["\n]". collection[*numBooks].title);

} ;

switch (choice) {

case I:

addBook(bookCollection, &numBooks);

break;

case 2:

printf("Enter the title of the book to search:");

scanf(" %["\n]", searchTitle);

searchBook(bookCollection, numBooks, search Title);

break;

do {

II Display menu

printf("\nMenu:\n");

printf]" 1. Add a book to the collection\n");

printf("2. Search for a book by title\n");

printf("3. Exit\n");

printf("Enter your choice: ");

scanf("%d", &choice);

int choice;

char searchTitle[50];

int main() {

struct Book bookCollection[JOO]; II Array to store books

int numBooks = O; //Number of books in the collection

}

}

if (!found) {

printf("Book not found in the collection.\n");

}

} •

Ans:

Menu:

I. Add a book to the collection

2. Search for a book by title

3. Exit

Enter your choice: 2

Enter the title of the book to search: Introduction to C Programming

Book Found!

Title: Introduction to C Programming

Author: Reema Thareja

Publication Year: 2023

9 b) Significance of null pointer - 2.SM

Issues with wild/dangling pointer - 2.SM

return 0:

Output:

Menu:

I. Add a book to the collection

2. Search for a book by title

3. Exit

Enter your choice: I

Enter book title: Introduction to C Programming

Enter author name: Reema Thareja

Enter pub I ication year: 2023

Book added successfu I ly !

}

} while (choice!= 3);

case 3:

printf("Exiting the program. Goodbye!\n");

break;

default:

printf("lnvalid choice. Please enter a valid option.\n");

Security Risks:

I lard-to-Detect Bugs:

Bugs arising from uninitialized pointers can be challenging to detect and debug. The
program's behavior might seem normal until it encounters a situation where the uninitialized
pointer is accessed, causing unexpected issues.

Using an uninitialized pointer (a pointer that has not been assigned a valid memory address)
leads to undefined behavior. Dereferencing such a pointer can result in unpredictable
consequences, including crashes, data corruption, or security vulnerabilities.

Memory Access Violations:

Dereferencing an uninitialized or null pointer can lead to memory access violations. This
occurs when the program attempts to read or modify memory at an address that is not
allocated or accessible.

Undefined Behavior:

Syntax/Example:

int *p; ·

*p = 12;

Null pointers are commonly used to initialize pointers or indicate that a pointer does not
currently point to any valid memory address. This is especially useful when the pointer's
target is not known or not applicable.

Error Handling:

Functions that return pointers often use null pointers to indicate errors or exceptional
conditions. For example, ifa function fails to allocate memory, it might return a null pointer
to signify the failure.

Pointer Comparison:

Null pointers are often used in comparisons to check whether a pointer points to a valid
memory location. This is particularly useful for avoiding dereferencing invalid pointers and
causing undefined behavior.

Potential Issues with Uninitialized Pointers:

A null pointer in C is a pointer that does not point to any memory location. It is represented
by the constant NULL and is typically used to indicate that the pointer is intentionally not
pointing to a valid memory location.

Syntax: type pointer_name = NULL;

The significance of null pointers includes:

Initialization and Indication of Absence:

•

Null Pointer in C:

Function Scope:

In C, variables declared outside of any function (at the tile level) have function scope.

They are accessible throughout the file after their declaration.

}

131ock-scopcd variables are typically used for temporary storage or as loop counters.

void exampleFunction() {

int localVar = IO; II Block-scoped variable

II localVar is visible and usable only within this function

Block Scope (Local Scope):

Variables declared within a block of code, such as inside a function. have block scope.

They are only accessible within the block where they are declared and are not visible outside
that block.

Scope refers to the region of the program where a variable is visible and can be accessed. In
C. there are three primary types of scope:

In C, the concepts of scope and lifetime define when and where a variable is accessible and
how long it exists during the execution of a program.

Scope of Variables:

Ans:

10 a) Explanation of scope and life time of variables - 3M

Example of local and global variables - 2M

UNIT-V ~ J
I fo, -;n Explf\in-- the concepts of \'ctriahlc scope - anti r:2 f <'03 ! -:= M I
; lifetime in a pr< br:-imrning language and I :

pro, id~ evnmplcs of loc.il nnd µl()h,11 , .mnblcs I
'. in c I J

bl· You .11c <k~ignin~ a 1)rpg:·:1m 111 1ndna~c..' a I I.A IC< >-l .:; \I
libt?ry':- c_a1alc:e. Cn:.i!'"· ;1 <. · !'ro~_1ra1n that j I

j dclmc~ a i~111c111m It) add bo\1ks IL) the catalog.
i The I unction should t.ikc hl,(-k dc..·tai I: as
. p •. rramctcrs and append t~i :1 !d-: ..

I fan uninitialized pointer is used to store the address of dynamically allocated memory, there
is a risk of resource leaks. Without proper initialization or deal location, the program may lose
references to allocated memory. leading to memory leaks.

Resource Leaks:

Uninitialized pointers can be exploited by attackers to manipulate the program's behavior.
leading to security vulnerabilities. For example, they might use uninitialized pointers to
overwrite memory, execute arbitrary code, or gain unauthorized access.

Static Variables:

Variables declared with the static keyword have static storage duration.

They are created before the program starts and persist throughout the program's execution.

Example:

void exampleFunction() {

static int static Var= 20; II Static variable

II static Var exists throughout the program's execution

}

They are created when the block is entered and destroyed when the block is exited.

Example:

void exampleFunction() {

int localVar = 1 O; II Automatic variable

II local Var exists while this function is executing

Lifetime refers to the period during which a variable exists in memory, from its creation to its
destruction. In C, there are four primary types of variable lifetime:

Automatic (Local) Variables:

Variables declared within a block without the static keyword have automatic storage
duration.

Lifetime of Variables:

}

void examplef unction() {

II tile Var is accessible within this function

File Scope (Global Scope):

Variables declared using the static keyword outside of any function have file scope.

They are accessible throughout the entire file in which they are declared but are not visible
outside that file.

II File-scoped variable

static int file Var= 30;

}

Function-scoped variables are often used as global variables .

II Function-scoped variable

int globalVar = 20;

void exampleFunction() {

II globalVar is accessible within this function

•

•

Output:

Global variable in main: IO

Modified global variable in main: 13

Local variable: 5

Global variable: 13

Modified local variable: 7

return 0:

int main() {

II Accessing and modifying global variable from main function

printf("Global variable in main: o/od\n", globalVar);

global Var+= 3;

printf("Modified global variable in main: o/od\n", globalVar);

II Calling the function

cxamplclunctiont):

#include <stdio.h>

II Global variable

int global Var= IO;

II Function using both local and global variables

void cxampleFunction() {

II Local variable within the function

int local Var= 5;

II Accessing and modifying local and global variables

printf("Local variable: o/od\n", local Var);

printf("Global variable: o/od\n", globalVar);

localVar += 2;

global Var+= 5;

printf("Modified local variable: o/od\n". localVar);

printf("Modified global variable: o/od\n", globalv ar);

II Add the book to the file

printf("Enter publication year: ");

scanf("%d", &newBook.year);

scanf("o/o["\n]", newBook.title);

printf]" Enter author name: ");

scanf("o/o(A\n]", newBook.author);

II Get input for the new book

printf("Enter book title: ");

int maim} {

struct Book newBook;

}

fwrite(&book, sizeof(struct Book), 1, file);

II Close the file

fclose(file);

II Write the book structure to the file

}

return;

printf("Error opening file o/os\n", filename);

II function to add a book to the file

void addBookToFile(struct Book book, const char *filename) {

FILE *file= fopen("book_catalog.bin", "ab"); II Open the file in binary append mode

if (file = NULL) {

} ;

int year;

struct Book {

char title[I 00];

char author[100];

II Structure definition for a book

#include <stdio.h>

Ans:

• Modified global variable: 18

IO b) Implementation library system using structures, functions and files -
SM

// Input from the user

int number;

int ma in() {

II Recursive case: factorial(n) = 11 * factorial(n-1)

return n * factorial(n - I);

} else {

return I;

if (n == 0) {

II Function to calculate the factorial of a number using recursion

unsigned long long factorial(int n) {

II Base case: factorial of O is I

#include <stdio.h>

Ans) Recursion is a programming concept where a function calls itself directly or indirectly
to solve a problem. In recursive programs, a problem is divided into smaller subproblems,
and each subproblem is solved using the same approach. Recursive functions have two main
components: a base case and a recursive case.

11 a) Definition - IM

Implementation of the program - 4M

C031 SM

I

~ ...
. OR
11 a) Ddin~ r~cursion. -Ol!velop a J)rn~;~~un tt~-finti I "' • f.,, ,,_.,

; f?c1oria~_o(~g:i_yen numh~-u~~ng recursion. I l bJ Discuss the significance of file modes (e~g., "r,'' L3

I l "w, '' ''a") when opening and manipulating files I
-L .J...and .£!:S:~_Y{dc a~~xa~le for.?_~£h mode. 'I

Enter publication year: 2023

Book added successfully!

Enter author name: Recma Tharcja

Enter book title: Introduction to C Programming

Output:

return O;

addBookToFile(newBook, "books.dat");

printf("Book added successfully!\n");

A File is a collection of data stored in the secondary memory. A file represents a sequence of
bytes, regardless of it being a text file or a binary file.

File opening modes:

"r" (Read mode):

Opens the file for reading.

The file must exist; otherwise, the fopen function will return NOLL.

The file pointer is positioned at the beginning of the file.

FILE *file= fopen(''example.txt", "r");

"w" (Write mode):

Opens the file for writing.

If the file already exists, its contents are truncated (deleted).

If the file does not exist, a new file is created.

The file pointer is positioned at the beginning of the file.

FJLE * file = fopen("example.txt", "w");

Ans:

11 b) Description of File opening modes -2M

Example (Syntax) for each mode - 3M

Enter a non-negative integer: 6

Factorial of 6 = 720

Output:

}

return O;

II Check if the number is non-negative

if (number< 0) {

printf("Factorial is undefined for negative numbers.\n");

} else {

II Call the factorial function and display the result

unsigned Jong long result= factorial(number);

printft'Factorial of %d = %llu\n" number result);
\ ' ' . '

scanf("%d", &number);

printf("Enter a non-negative integer: "): ...

It's important to note that these modes can be combined, for example, "rb+", "w+", "a+". etc ..
to achieve different combinations of read and write operations. Additionally, always check
whether the file was successfully opened by checking if the file pointer is not NULL after the
fopen call.

"a+" (Read and Append mode):

Opens the file for both reading and appending.

If the file exists. the file pointer is positioned at the end of the file.

If the file docs not exist, a new file is created.

FILE *file= fopen("example.txt", "a+"):

FILE "file= fopen("example.txt", "w+");

If the file does not exist, a new file is created.

The tile pointer is positioned at the beginning of the tile.

Opens the file for both reading and writing.

ff the file exists, its contents arc truncated.

"w+" (Read and Write mode):

The tile pointer is positioned at the beginning of the file.

FILE *lile = fopcn("example.txt". "r+");

FILE *tile= fopen("example.bin", "ab");

"r+" (Read and Write mode):

Opens the file for both reading and writing.

The file must exist.

FILE "file= fopen("example.bin", "wb'');

r!LE "file= fopcn("example.bin", "rb'');

Binary mode is used when working with binary data, and it ensures that the data is read or
written as is without any newline character conversions.

These are similar to "r", "w'', and "a" modes, respectively, but they open the file in binary
mode.

"rb''. "wb". "ab" (Binary modes):

If the tile does not exist, a new file is created.

Existing content in the file is not truncated.

FILE *file= fopen("example.txt", "a");

Opens the file for writing, but if the file exists, the file pointer is positioned at the end of the
file.

"a" (Append mode):

